Юридический справочник

Органическая химия: Арены. Арены — номенклатура, получение, химические свойства Типы изомерии аренов

ПОСОБИЕ-РЕПЕТИТОР ПО ХИМИИ.

Арены. Бензол .

Статья посвящена ароматическим углеводородам (аренам) и самому простому их представителю – бензолу. Материал содержит
теоретическую часть в объеме, необходимом для подготовки к сдаче ЕГЭ, тест и задачи. Приведены также ответы и,

к некоторым задачам, – решения.

И.В.ТРИГУБЧАК

Ароматические углеводороды (арены). Бензол

П л а н 1. Определение, общая форму ла гомологического ряда, строение молекулы (на примере бензола). 2. Физические свойства бензола. 3. Химические свойства бензола: а) реакции замещения (галоге нирование, нитрование, суль фирование, алкилирование); б) реакции присоединения (ги дрирование, хлорирование); в) реакции окисления (горе ние). 4. Получение бензола (в про мышленности – переработкой нефти и угля, дегидрированием циклогексана, ароматизацией гексана, тримеризацией ацетиле на; в лаборатории – сплавлением солей бензойной кислоты со ще лочами).

Арены – это углеводороды, молекулы которых содержат одно или несколько бензольных колец. Под бензольным кольцом под разумевается кольцевая система атомов углерода с делокализован ными π-электронами. В 1931 г. Э.Хюккель сформулировал пра вило, гласящее, что соединение должно проявлять ароматические свойства, если в его молекуле со держится плоское кольцо с (4n + 2) обобщенными электронами, где n может проявлять значения целых чисел от 1 и далее (правило Хюк келя). Согласно этому правилу системы, содержащие 6, 10, 14 и т.д. обобщенных электронов, явля ются ароматическими. Различают три группы аренов по количеству и взаимному расположению бен зольных колец.

Моноциклические арены.

Изобразите структурные фор мулы бензола, толуола, о-ксилола, кумола. Назовите эти вещества по систематической номенклатуре.

Полициклические арены с изолированными ядрами.

Изобразите структурные фор мулы дифенила, дифенилметана, стильбена.


Полициклические арены с конденсированными ядрами.

Изобразите структурные фор мулы нафталина, антрацена.


Общая формула моноциклических аренов ряда бензола – С6Н2n–6, где n ≥ 6. Простейший представитель – бензол (С6Н6). Предложенная в 1865 г. немецким химиком
Ф.А.Кекуле циклическая формула бензола с сопряженными связями (циклогексатриен-1,3,5) не объясняла многие свойства бензола.
Для бензола характерны реакции замещения, а не реакции присоединения, как для непредельных углеводородов. Реакции присоединения возможны, но протекают
они труднее, чем у алкенов.
Бензол не вступает в реакции, являющиеся качественными на непредельные углеводороды (с бромной водой и раствором перманганата калия).
Проведенные позже исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину – 0,140 нм (среднее значение между длиной простой связи С–С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120 °. Молекула бензола представляет собой правильный плоский шестиугольник.
Современная теория строения молекулы бензола базируется на представлении о гибридизации орбиталей атома углерода. Согласно этой теории, атомы углерода в бензоле находятся в состоянии sp2-гибридизации. Каждый атом углерода образует три σ-связи (две с атомами углерода и одну – с атомом водорода). Все σ-связи находятся в одной плоскости. У каждого атома углерода остается еще по одному р-электрону, не участвующему в гибридизации. Негибридизированные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей. Каждое р-облако перекрывается с двумя соседними р-облаками, в результате чего образуется единая сопряженная π-система. Единое π-электронное облако расположено над и под бензольным кольцом, причем р-электроны не связаны с каким-либо атомом углерода и могут перемещаться относительно них в том или ином направлении. Полная симметричность бензольного ядра, обусловленная сопряжением, придает ему особую устойчивость.
Таким образом, наряду с формулой Кекуле используется формула бензола, где обобщенное электронное облако изображают замкнутой линией внутри кольца.
Изобразите формулу Кекуле и формулу, показывающую сопряженную π-систему.


Радикал, образованный от бензола, имеет тривиальное название фенил.
Изобразите его структурную формулу.

Физические свойства

При обычных условиях бензол представляет собой бесцветную жидкость с температурой плавления 5,5 °С, температурой кипения 80 °С; имеет характерный запах; легче воды и с ней не смешивается; хороший органический растворитель; токсичен.

Химические свойства

Химические свойства бензола и его гомологов определяются спецификой ароматической связи. Наиболее характерными для аренов являются реакции замещения (для бензола они протекают тяжелее, чем для его гомологов).

Галогенирование.
Напишите реакцию хлорирования бензола.


Нитрование.
Напишите реакцию взаимодействия бензола с азотной кислотой.


Сульфирование.
Напишите реакцию взаимодействия бензола с серной кислотой.


Алкилирование (реакция Фри деля–Крафтса).

Напишите реак ции получения этилбензола при взаимодействии бензола с хлор этаном и с этиленом.


Cистема из 6 π-электронов является более устойчивой, чем 2π-электронная, поэтому реакции присоединения для аренов менее характерны, чем для алкенов; они возможны, но при более жестких условиях.

Гидрирование.

Напишите реакцию гидрирования бензола до циклогексана.


Присоединение хлора.

Напишите реакцию хлорирования бензола до гексахлорана.

Реакции окисления для бензола возможна только в виде горения, т.к. к действию окислителей бензольное кольцо устойчиво.
Напишите реакцию горения бензола. Объясните, почему ароматические углеводороды горят коптящим пламенем.


Получение аренов

Арены (ароматические углеводороды) - соединения, в молекулах которых содержится одно или несколько бензольных колей - циклических групп атомов углерода со специфическим характером связей.

Бензол - молекулярная формула С 6 Н 6 . Впервые была предложена А. Кекуле:

Строение аренов.

Все 6 атомов углерода находятся в sp 2 -гибридизации . Каждый атом углерода образует 2 σ -связи с двумя соседними атомами углерода и одним атомом водорода, которые находятся в одной плоскости. Углы составляют 120°. Т.е. все атомы углерода лежат в одной плоскости и образуют шестигранник. У каждого атома есть негибридная р -обиталь, на которой находится неспаренный электрон. Эта орбиталь перпендикулярна плоскости, и поэтому π -электронное облако «размазано» по всем атомам углерода:

Все связи равноценны. Энергия сопряжения - количество энергии, которую надо затратить, чтобы разрушить ароматическую систему.

Именно это обуславливает специфические свойства бензола - проявление ароматичности. Это явление было открыто Хюккелем, и называется правилом Хюккеля.

Изомерия аренов.

Арены можно разделить на 2 группы:

  • производные бензола:

  • конденсированные арены:

Общая формула аренов - С n H 2 n -6 .

Для аренов характерна структурная изомерия, которая объясняется взаимным расположением заместителей в кольце. Если в кольце находится 2 заместителя, то они могут находиться в 3-х различных положениях - орто (о-), мета (м-), пара (п-):

Если от бензола «отобрать» один протон, то образуется радикал - C 6 H 5 , которое носит название арильного радикала. Простейшие:

Называют арены словом «бензол» с указанием заместителей в кольце и их положения:

Физические свойства аренов.

Первые члены ряда - жидкости без цвета с характерным запахом. Они хорошо растворяются в органических растворителях, но нерастворимы в воде. Бензол токсичен, но имеет приятный запах. Вызывает головную боль и головокружения, при вдыхании больших количеств паров можно потерять сознание. Раздражает слизистую оболочку и глаза.

Получение аренов.

1. Из алифатических углеводородов с помощью «ароматизации» предельных углеводородов, входящих в состав нефти. При пропускании над платиной или оксидом хрома наблюдается дигидроциклизация:

2. Дегидрирование циклоалканов:

3. Из ацетилена (тримеризация) при пропускании над раскаленным углем при 600°С:

4. Реакция Фриделя - Крафтса в присутствии хлорида алюминия :

5. Сплавление солей ароматических кислот с щелочью:

Химические свойства аренов.

Реакции замещения аренов.

Ядро аренов обладает подвижной π -системой, на которую действуют электрофильные реагенты. Для аренов характерно электрофильное замещение, которое можно представить так:

Электрофильная частица притягивается к π -системе кольца, затем образуется прочная связь между реагентом Х и одним из атомов углерода, при этом единство кольца нарушается. Для восстановления ароматичности выбрасывается протон, а 2 электрона С-Н переходят в π-систему кольца.

1. Галогенирование происходит в присутствии катализаторов - безводных хлоридов и бромидов алюминия , железа :

2. Нитрование аренов. Бензол очень медленно реагирует с концентрированной азотной кислотой при сильном нагревании. Но если добавить серную кислоту , то реакция протекает очень легко:

3. Сульфирование протекает под воздействием 100% - серной кислоты - олеума:

4. Алкилирование алкенами . В результате происходит удлинение цепи, реакция протекает в присутствии катализатора - хлорида алюминия:

Реакции присоединения аренов.

1. Гидрирование (при катализаторах) аренов:

2. Радикальное галогенирование при взаимодействии паров бензола и сильного УФ-излучения. В результате образуется твердый продукт - С 6 H 6 Cl 6 :

3. Окисление кислородом воздуха. Реакция протекает при оксиде ванадия (V) и 400°С:

Гомологи бензола имеют ряд отличий - на их продукты я изначальный заместитель в кольце:

Замещение в кольце возможно только в присутствие катализатора (хлорида железа и алюминия), замещение протекает в орто- и пара- положения по отношению к алкильному радикалу:

Если действуют сильные окислители (перманганат калия), то цепь алкильная разрушается и образуется бензойная кислота:

Дополнительные материалы по теме: Арены. Свойства аренов.

Химия 7,8,9,10,11 класс, ЕГЭ, ГИА

Основная информация по курсу химии для обучения и подготовки в экзаменам, ГВЭ, ЕГЭ, ОГЭ, ГИА

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С 6 Н 6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С 6 Н 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле , содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p -орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С-С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей . Простейший гомолог бензола - толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол . Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями , 4 - пара- , а 3 и 5 - метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства бензола

Реакции замещения . Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов . При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу -NO 2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование . Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле С n H 2 n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С 8 Н 10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто — (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м -) – через один атом углерода и пара — (п -) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.



















1. Классификация ароматических углеводородов.

2. Гомологический ряд моноциклических аренов, номенклатура, получение.

3. Изомерия, строение бензола и его гомологов.

4. Свойства аренов.

Аренами называют богатые углеродом циклические углеводороды, которые содержат в молекуле бензольное ядро и обладают особыми физическими и химическими свойствами. Арены по числу бензольных колец в молекуле и способа соединения циклов подразделяют на моноциклические (бензол и его гомологи) и полициклические (с конденсированными и изолированными циклами) соединения.

Арены бензольного ряда можно рассматривать как продукты замещения атомов водорода в молекуле бензола на алкильные радикалы. Общая формула таких аренов СnH 2 n- 6. В названии монозамещенных аренов указывают название радикала и цикла (бензол):

бензол метилбензол (толуол) этилбензол.

В более замещенных аренах положение радикалов указывают наименьшими цифрами, в дизамещенных аренах положение радикалов называют: 1,2 - орто (o -)-, 1,3 - мета (м -)- и 1,4 - пара (п -)-:

1,3-диметилбензол 1,2-метилэтилбензол

м -диметилбензол (м -ксилол) о -метилэтилбензол (о -ксилол)

Для аренов широко распространены тривиальные названия (некоторые названия указаны в скобках).

Нахождение в природе.

Ароматические углеводороды встречаются в растительных смолах и бальзамах. Фенантрен в частично или полностью гидрированном виде содержится в структурах многих природных соединений, например стероидов, алкалоидов.

Получение аренов:

1. сухая перегонка каменного угля;

2. дегидрирование циклоалканов

3. дегидроциклизация алканов с 6 и более атомами углерода в составе

4. алкилирование

Изомерия. Для гомологов бензола характерна структурная изомерия: различное строение углеродного скелета бокового радикала и различные состав и расположение радикалов в бензольном кольце. Например, изомеры ароматических углеводородов состава С 9 Н 12 (пропилбензол, изопропилбензол, о-метилэтилбензол и 1,2,4-триметилбензол):

Строение. Ароматические углеводороды имеют целый ряд особенностей в электронном строении молекул.

Структурную формулу бензола впервые предложил А. Кекуле. Это шестичленный цикл с чередующимися двойными и одинарными связями, при этом двойные связи перемещаются в структуре:

В обеих формулах углерод четырехвалентен, все атомы углерода равноценны и дизамещенные бензола существуют в виде трех изомеров (орто -, мета -, пара- ). Однако такая структура бензола противоречила его свойствам: бензол не вступал в характерные для непредельных углеводородов реакции присоединения (например, брома) и окисления (например, с перманганатом калия), для него и его гомологов основной тип химического превращения - реакции замещения.

Современный подход к описанию электронного строения бензола разрешает это противоречие следующим образом. Атомы углерода в молекуле бензола находятся в sр 2 -гибридизации. Каждый из атомов углерода образует три ковалентные σ-связи - 2 связи с соседними атомами углерода (sр 2 -sр 2 -перекрывание орбиталей) и одну с атомом водорода (sр 2 -s- перекрывание орбиталей). Негибридизованные р-орбитали за счет бокового перекрывания образуют π-электронную сопряженную систему (π,π-сопряжение), содержащую шесть электронов. Бензол представляет собой плоский правильный шестиугольник с длиной связи углерод-углерод 0,14нм, связи углерод-водород 0,11нм, валентными углами 120 0:

Молекула бензола стабильнее циклических соединений с изолированными двойными связями, поэтому бензол и его гомологи склонны к реакциям замещения (бензольное кольцо сохраняется), а не присоединения и окисления.

Сходство в строении и свойствах (ароматичность) с бензолом проявляют и другие циклические соединения. Критерии ароматичности (Э. Хюккель, 1931г.):

а) плоская циклическая структура, т.е. атомы, образующие цикл, находятся в sр 2 -гибридизации; б) сопряженная электронная система; в) число электронов (N) в кольце равно 4n+2, где n - любое целочисленное значение - 0,1,2,3 и т.д.

Критерии ароматичности применимы как к нейтральным, так и заряженным циклическим сопряженным соединениям, поэтому ароматическими соединениями будут, например:

фуран катион циклопропенила.

Для бензола и других ароматических соединений наиболее характерны реакции замещения атомов водорода при углеродных атомах в цикле и менее характерны реакции присоединения по π-связи в цикле.

Физические свойства.

Бензол и его гомологи являются бесцветными жидкостями и кристаллическими веществами со своеобразным запахом. Они легче воды и плохо в ней растворяются. Бензол неполярное соединение(μ=0), алкилбензолы -

полярные соединения(μ≠0).

Химические свойства.

Электрофильное замещение. Наиболее характерным превращением для аренов является электрофильное замещение - S Е. Реакция протекает в две стадии с образованием промежуточного σ-комплекса:

Условиях реакции: температура 60-80 0 С, катализаторы - кислоты Льюса или минеральные кислоты.

Типичные S Е - реакции:

а) галогенирование (Cl 2 , Br 2):

б) нитрование:

в ) сульфирование (H 2 SO 4 , SO 3 , олеум):

г) алкилирование по Фриделю-Крафтсу (1877г.) (RНal, ROH, алкены):

д) алкилирование по Фриделю-Крафтсу (галогенангидриды, ангидриды карбоновых кислот):

У гомологов бензола в результате влияния бокового радикала (+I-эффект, электронодонорная группа) π-электронная плотность бензольного кольца распределена неравномерно, увеличиваясь в 2,4,6-положениях. Поэтому S Е -реакции протекают направлено (в 2,4,6- или о- и п- положения). Гомологи бензола по сравнению с бензолом в реакциях этого типа проявляют большую реакционная активность.

толуол п -хлортолуол о -хлортолуол

Реакции боковых радикалов в алкилбензолах (радикальное замещение - S R и окисление).

Реакции радикального замещения протекают, как и в предельных углеводородах, по цепному механизму и включают стадии инициирования, роста и обрыва цепи. Реакция хлорирования протекает ненаправлено, реакция бромирования региоселективна - замещение водорода происходит уα-углеродного атома.

В алкилбензолах боковая цепь окисляется перманганатом калия, бихроматом калия с образованием карбоновых кислот. Независимо от длины боковой цепи, окисляется атом углерода, связанный с бензольным ядром (α-углеродный или бензильный атом углерода), остальные атомы углерода окисляются до СО 2 или карбоновых кислот.

этилбензол бензойная кислота

п -метилэтилбензол терефталевая кислота

Реакции бензола с нарушением ароматической системы.

Ароматические углеводороды имеют прочный цикл, поэтому реакции с нарушением ароматической системы (окисление, радикальное присоединение) протекают в жестких условиях (высокие температуры, сильные окислители).

а) радикальное присоединение:

1. гидрирование

толуол циклогексан

2. хлорирование

бензол 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Продукт этой реакции представляет смесь пространственных изомеров.

Ориентация электрофильного замещения в ароматических соединениях. Заместители в бензольном кольце по своему ориентирующему влиянию делятся на два типа: орто -, пара -ориентанты (заместители 1 рода) и мета -ориентанты (заместители 2 рода).

Заместители 1 рода - это электронодонорные группы, которые повышают электронную плотность кольца, увеличивают скорость реакции электрофильного замещения и активируют бензольное кольцо в этих реакциях:

D(+I-эффект): - R, -СН 2 ОН, -СН 2 NН 2 и т.д.

D(-I,+М-эффекты): -NH 2 ,-OH, -OR, -NR 2 , -SH и т.д.

Заместители 2 рода – электроноакцепторные группы, которые понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях:

А (-I-эффект): -SO 3 H, -CF 3 , -CСl 3 и т.д.

А (-I, -М -эффект): -НС=О, -СООН, -NO 2 и т. д.

Атомы галогенов занимают промежуточное положение - они понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях, однако это о -,п -ориентанты.

Если в бензольном кольце находится два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В реакциях электрофильного замещения соединения с согласованной ориентацией образуют меньшее количество изомеров, во втором случае образуется смесь из большего числа изомеров. Например:

п - гидроксибензойная кислота м - гидроксибензойная кислота

(согласованная ориентация) (несогласованная ориентация)

Полициклические конденсированные ароматические углеводороды (нафталин, антрацен, фенантрен и т.д.), в основном, по свойствам похожи на бензол, но вместе с тем имеют некоторые отличия.

Применение:

1. ароматические углеводороды - сырье для синтеза красителей, взрывчатых веществ, лекарственных препаратов, полимеров, поверхностно-активных веществ, карбоновых кислот, аминов;

2. жидкие ароматические углеводороды хорошие растворители органических соединений;

3. арены - добавки для получения высокооктановых бензинов.

Знаете ли вы, что -В 1649 году немецкий химик Иоганн Глаубер впервые получил бензол.

В 1825 году М. Фарадей выделил из светильного газа углеводород и установил его состав - С 6 Н 6 .

В 1830 году Юстус Либих назвал полученное соединение бензолом (от араб. Вen-аромат + zoa-сок + лат. ol-масло).

В1837 году Огюстом Лораном назван радикал бензола С 6 Н 5 - фенил (от греч phenix-освещать).

В 1865 году немецкий химик-органик Фридрих Август Кекуле предложил формулу бензола с чередующимися двойными и одинарными связями в шестичленном цикле.

В 1865-70-х годах В. Кернер предложил использовать приставки для обозначения взаимного расположения двух заместителей: 1,2 положение - орто- (orthos - прямой);1,3- мета (meta - после) и 1,4- пара (para - напротив).

Ароматические углеводороды - высокотоксичные вещества, вызывают отравление и поражение некоторых органов, например почек, печени.

Некоторые ароматические углеводороды - канцерогены (вещества, вызывающие раковые заболевания), например бензол (вызывает лейкемию), один из сильнейших - бензопирен (содержится в табачном дыме).

А РЕНЫ

Ароматические углеводороды (арены) – циклические углеводороды, объединяемые понятием ароматичности, которая обуславливает общие признаки в строении и химических свойствах.

Классификация

По числу бензольных колец в молекуле арены подразделяются на:

моноядерные

многоядерные

Номенклатура и изомерия

Структурным родоначальником углеводородов бензольного ряда служит бензол С 6 Н 6 от которого строятся систематические названия гомологов.

Для моноциклических соединений сохраняются следующие несистематические (тривиальные) названия:

Положение заместителей указывают наименьшими цифрами (направление нумерации не имеет значения),

а для ди замещенных соединений можно использовать обозначения орто, мета , пара.

Если в кольце три заместителя тони должны получить наименьшие номера, т.е. ряд «1,2,4» имеет преимущество перед «1,3,4».

1,2-диметил-4-этилбензол (верное название) 3,4-диметил-1-этилбензол (неверно)

Изомерия монозамещенных аренов обусловлена строением углеродного скелета заместителя, у ди- и полизамещенных гомологов бензола добавляется ещё изомерия, вызванная различным расположением заместителей в ядре.

Изомерия ароматических УВ состава С 9 Н 12:

Физические свойства

Температуры кипения и плавления у аренов выше, чем у алканов, алкенов, алкинов, малополярные, не растворимы в воде и хорошо растворимы в неполярных органических растворителях. Арены это жидкости или твердые вещества, имеющие специфические запахи. Бензолы и многие конденсированные арены токсичны, некоторые из них проявляют концерогенные свойства. Промежуточными продуктами окисления конденсированных аренов в организме являются эпоксиды, которые либо сами непосредственно вызывают рак, либо являются предшественниками канцерогенов.

Получение аренов

Многие ароматические УВ имеют важное практическое значение и производятся в крупном промышленном масштабе. Ряд промышленных способов основан на переработке угля и нефти.

Нефть состоит главным образом из алифатических и алициклических УВ, для превращения алифатических или ациклических УВ в ароматические разработаны способы ароматизации нефти, химические основы которых развиты Н.Д. Зелинским, Б.А. Казанским.

1. Циклизация и дегидрирование:

2. Гидродезметилирование:

3. Гомологи бензола получают путем алкилирования или ацилирования с последующим восстановлением карбонильной группы.

а) Алкилирование по Фриделю-Крафтсу:

б) Ацилирование по Фриделю-Крафтсу:

4. Получение бифенила по реакции Вюрца-Фитинга:

5. Получение дифенилметана по реакции Фриделя-Крафтса:

Строение и химические свойства.

Критерии ароматичности:

На основании теоретических расчетов и экспериментального изучения циклических сопряженных систем было установлено, что соединение ароматично, если оно имеет:

  • Плоский циклический σ-скелет;
  • Сопряженную замкнутую π-электронную систему, охватывающую все атомы цикла и содержащую 4n + 2, где n = 0, 1, 2, 3 и т.д. Эта формулировка известна, как правило Хюккеля. Критерии ароматичности позволяют отличать сопряженные ароматические системы от всех других. Бензол содержит секстет π-электронов и соответствует правилу Хюккеля при n = 1.

Что дает ароматичность:

Несмотря на высокую степень ненасыщенности, ароматические соединения устойчивы к действию окислителей и температуры, они более склонны вступать в реакции замещения, а не присоединения. Эти соединения обладают повышенной термодинамической стабильностью, обеспечивающейся высокой энергией сопряжения ароматической системы кольца (150 кДж/моль), поэтому арены предпочтительней вступают в реакции замещения, в результате чего сохраняют ароматичность.

Механизм реакций электрофильного замещения в ароматическом кольце:

Электронная плотность π-сопряженной системы бензольного кольца является удобным объектом для атаки электрофильными реагентами.

Как правило, электрофильные реагенты генерируются в процессе реакции при помощи катализаторов и соответствующих условий.

Е – Y → E δ + – Y δ - → E + + Y -

Образование π-комплекса. Первоначальная атака электрофилом π-электронного облака кольца приводит к координации реагента с π-системой и образованию комплекса донорно-акцепторного типа называемого π-комплекса. Ароматическая система не нарушается:

Образование σ-комплекса. Лимитирующая стадия, на ней электрофил образует ковалентную связь с атомом углерода за счет двух электронов π-системы кольца, что сопровождается переходом данного атома углерода из sp 2 - в sp 3 - гибридное состояние и нарушением ароматической, молекула превращается в карбокатион.

Стабилизация σ-комплекса. Осуществляется путем отщепления от σ-комплекса протона с помощью основания. При этом за счет двух электронов разрывающейся ковалентной связи С – Н восстанавливается замкнутая π-системы кольца, т.е. происходит возврат молекулы в ароматическое состояние:

Влияние заместителей на реакционную способность и ориентацию электрофильного замещения

Заместители в бензольном кольце нарушают равномерность в распределении π- электронного облака кольца и тем самым оказывают влияние на реакционную способность кольца.

  • Электронодонорные заместители (Д) повышают электронную плотность кольца и увеличивают скорость электрофильного замещения, такие заместители называют активирующими.
  • Электроноакцепторные заместители (А) понижают электронную плотность кольца и уменьшают скорость реакции, называются дезактивирующими.

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении