Юридический справочник

Получение фенолов. Кислотные свойства фенолов. Кислотные свойства фенолов Влияние бензольного кольца на свойства фенола

Несмотря на то, что фенолы по строению подобны спиртам, они являются намного более сильными кислотами, чем спирты. Вместе с тем делокализация заряда в феноксид-ионе происходит в меньшей степени, чем в карбоксилат-ионе, соответственно фенолы более слабые кислоты по сравнению с карбоновыми кислотами. Фенолы растворяются в водном растворе гидроксида натрия, но они не реагируют c гидрокарбонатом натрия. Это простейший, хотя и не очень надежный тест, по которому можно различать фенолы и карбоновые кислоты, которые взаимодействуют c гидрокарбонатом натрия c выделением углекислого газа. Влияние заместителя в бензольном кольце на кислотность фенолов согласуется с представлениями об их электронных эффектах. Электронодонорные заместители понижают, a электроноакцепторные - усиливают кислотные свойства фенолов. Фенолы диссоциируют в водных растворах с образованием фенолят-ионов и ионов водорода:

В отличие от спиртов, фенолы реагируют не только с щелочными и щелочноземельными металлами, но и с растворами щелочей, образуя феноляты:

С увеличением длины углеводородного радикала скорость этой реакции замедляется. В присутствии следов влаги образующиеся алкоголяты разлагаются до исходных спиртов.

Таутомерия фенолов

Между амбидентными феноксид- и енолят-ионами существует определенная аналогия. Фенол также является аналогом енола и между ним и его кето-формами (2,4- и 2,5-циклогексадиенами) должны существовать отношения, подобные тем, которые наблюдаются для равновесия кето- и енольной форм кетонов.

Соотношение двух таутомерных форм здесь полностью обратно тому, которое наблюдается для кетонов, где преобладает кето-форма. Устойчивость таутомерных кето-форм возрастает при переходе к полиатомным фенолам. Так, при плавлении 1,4-дигидроксинафталина получается равновесная смесь, содержащая 10%-дикетоформы.

В 1968 году В.А.Коптюг с сотрудниками предложил простой и чрезвычайно эффективный способ стабилизации кето-формы разнообразных фенолов с помощью сильных кислот Льюиса - хлорида или бромида алюминия. Эти жесткие кислоты Льюиса связывают жесткий карбонильный кислород кето-формы в очень стабильный комплекс, который может быть зафиксирован. Кето-енольная таутомерия лежит в основе замещения фенольного гидроксила на аминогруппу, которое происходит при нагревании 1- или 2-гидроксинафталина, сульфопроизводных α- и β-нафтолов, 6- или 8-гидроксихинолинов и других гидроксипроизводных нафталина, антрацена, хинолина с водным раствором сульфита или гидросульфита аммония при 130-150 о С.

2.3 Этерификация фенолов

Ариловые эфиры карбоновых кислот получают ацилированием фенолов или их Na-, K-солей галогенангидридами или ангидридами кислот.

Реакции электрофильного замещения в ароматическом кольце

Гидроксильная группа относится к числу групп, активирующих электрофильное замещение в ароматическом кольце и направляющих заместитель в орто- и пара- положения. Активирующее влияние гидроксильной группы настолько сильно, что в отдельных случаях реакцию трудно остановить на стадии введения только одного заместителя. Фенолы вступают практически во все типичные реакции электрофильного замещения как с сильными, так и со слабыми электрофильными агентами.

Галогенирование фенолов

Галогенирование фенолов не требует катализа кислотами Льюиса (FeCl 3 , FeBr 3 , AlCl 3 и др.) и легко осуществляется под действием молекулярного галогена. Галогенирование фенола молекулярным бромом или хлором в полярной среде практически невозможно остановить на стадии моногалогенирования, поскольку реагирующей частицей здесь является фенолят-ион. Фенолят-ион содержит очень сильную активирующую группу - анион кислорода и скорость галогенирования фенолят-иона по крайней мере в тысячу раз выше, чем фенола. Галогензамещенный фенол является более сильной кислотой, чем фенол, он легче диссоциирует, что облегчает введение второго и третьего атома галогена в орто- и пара-положения.

При бромировании фенола в растворе бромистоводородной кислоты или при хлорировании в соляной кислоте диссоциация полностью подавляется и галогенированию подвергается сам фенол. При этом в зависимости от условий и количества галогена может быть получен п-бромфенол или 2,4-дибромфенол.

Аналогичным образом протекает и хлорирование фенола, но здесь получается значительное количество о-хлорфенола. Моногалогензамещенные производные фенолов удобно получать при галогенировании в неполярной среде, что также исключает диссоциацию фенолов.

Во всех случаях соотношение пара- и орто-изомеров при бромировании и иодировании значительно выше, чем при хлорировании.

Фенолы – это производные ароматических углеводородов, в молекулах которых гидроксильные группы –OH находятся у углеродных атомов бензольного кольца. По числу гидроксогрупп они бывает одноатомными (аренолы), двухатомными (арендиолы) и трехатомными (арентриолы). Простейший одноатомный фенол – гидроксибензол C6H5OH.

Электронное строение фенолов

По электронному строению фенолы являются полярными соединениями, или диполями. Отрицательный конец диполя – это бензольное кольцо, положительный – группа –OH. Дипольный момент направлен к бензольному кольцу.

Поскольку гидроксильная группа – заместитель I рода, она повышает электронную плотность, особенно для орто- и пара-положений, в бензольном кольце. Это объясняется сопряжением, возникающим между одной из неподеленных электронных пар атома кислорода в OH-группе и π-системой кольца. Такое смещение неподеленной пары электронов приводит к повышению полярности связи O-H.

Взаимное влияние атомов и атомных групп в фенолах отражается на свойствах этих веществ. Так, увеличивается способность к замещению водородных атомов в орто- и пара-положениях бензольного ядра, и обычно в результате таких реакций замещения образуются тризамещенные производные фенола. Повышение полярности связи между кислородом и водородом обусловливает появление достаточно большого положительного заряда (δ+) на атоме водорода, в связи с чем фенол диссоциирует в водных растворах по кислотному типу. В результате диссоциации образуются фенолят-ионы и катионы водорода.

Фенол C6H5OH – слабая кислота, называемая также карболовой кислотой. В этом заключается главное отличие фенолов от спиртов – неэлектроолитов.

Физические свойства фенола

По физическим свойствам C6H5OH – бесцветное кристаллическое вещество с температурой плавления 43˚C и температурой кипения 182˚C. На воздухе он окисляется и приобретает розовую окраску. При обычных условиях фенол ограниченно растворим в воде, но при нагревании выше 66˚C смешивается с H2O в любых отношениях. Это токсичное для человека вещество, способное вызывать ожоги кожи, антисептик.

Химические свойства фенола как слабой кислоты

Подобно всем кислотам, фенол диссоциирует в водных растворах, а также взаимодействует со щелочами с образованием фенолятов. Например, реакция C6H5OH и NaOH дает в итоге фенолят натрия C6H5ONa и воду H2O:

C6H5OH+NaOH=C6H5ONa+H2O.

Это свойство отличает фенолы от спиртов. Сходство со спиртами – реакция с активными металлами с образованием солей – фенолятов:

2C6H5OH+2K=2C6H5OK+H2.

Феноляты натрия и калия, образующиеся в результате двух последних реакций, легко разлагаются под действием кислот, даже такой слабой, как угольная. Из этого можно сделать вывод, что фенол – более слабая кислота, чем H2CO3.

ОПРЕДЕЛЕНИЕ

Фенолы - производные ароматических углеводородов, в молекулах которых гидроксильные группы непосредственно связаны с атомами углерода бензольного кольца. Функциональная группа, как и у спиртов, — OH.

Фенол - твердое бесцветное кристаллическое вещество, низкоплавкое, очень гигроскопичное, с характерным запахом. На воздухе фенол окисляется, поэтому его кристаллы приобретают вначале розоватый оттенок (рис. 1), а при длительном хранении темнеют и становятся более красными. Он малорастворим в воде при комнатной температуре, но быстро и хорошо растворяется при 60 - 70 o С. Фенол легкоплавок, его температура плавления 43 o С. Ядовит.

Рис. 1. Фенол. Внешний вид.

Получение фенола

В промышленных масштабах фенол получают из каменноугольной смолы. Среди лабораторных методов наиболее часто использую следующие:

— гидролиз хлорбензола

C 6 H 5 Cl + NaOH→C 6 H 5 OH + NaCl (kat = Cu, t 0).

— щелочное плавление солей аренсульфоновых кислот

C 6 H 5 SO 3 Na + 2NaOH→C 6 H 5 OH + Na 2 SO 3 + H 2 O (t 0).

— кумольный метод (окисление изопропилбензола)

C 6 H 5 -C(CH 3)H-CH 3 + O 2 →C 6 H 5 OH + CH 3 -C(O)-CH 3 (H + , t 0).

Химические свойства фенола

Химические превращения фенола протекают в основном с расщеплением:

1) связи О-Н

— взаимодействие с металлами

2C 6 H 5 OH + 2Na→ 2C 6 H 5 ONa + H 2 .

— взаимодействие с щелочами

C 6 H 5 OH + NaOH→C 6 H 5 ONa + H 2 O.

— взаимодействие с ангидридами карбоновых кислот

C 6 H 5 -OH + Cl-C(O)-O-C(O)-CH 3 → C 6 H 5 -O-C(O)-CH 3 + CH 3 COOH (t 0).

— взаимодействие с галогенангидридами карбоновых кислот

C 6 H 5 -OH + Cl-C(O)-CH 3 → C 6 H 5 -O-C(O)-CH 3 + HCl (t 0).

— взаимодействие с FeCl 3 (качественная реакция на фенол - появление фиолетовой окраски, исчезающей при добавлении кислоты)

6C 6 H 5 OH + FeCl 3 → (C 6 H 5 OH) 3 + 3Cl — .

2) связей C sp 2 -H преимущественно в о — и n -положениях

— бромирование

C 6 H 5 -OH + 3Br 2 (aq) →Br 3 -C 6 H 2 -OH↓ + 3HBr.

— нитрование (образование пикриновой кислоты)

C 6 H 5 -OH + 3HONO 2 (conc) → (NO 2) 3 -C 6 H 2 -OH + 3H 2 O (H +).

3) единого 6π-электронного облака бензольного кольца

— гидрирование

C 6 H 5 OH + 3H 2 → C 6 H 11 -OH (kat = Ni, t 0 = 130 - 150, p = 5 - 20 атм).

Применение фенола

Фенол в больших количествах используется для производства красителей, фенолформальдегидных пластмасс, лекарственных веществ.

Из двухатомных фенолов в медицине применяют резорцин как антисептик и вещество для некоторых клинических анализов, а гидрохинон и другие двухатомные фенолы используют при обработке фотоматериалов в качестве проявителей.

В медицине для дезинфекции помещений и мебели применяют лизол, в состав которого входят разные фенолы.

Некоторые фенолы используют как антиоксиданты - вещества, предотвращающие порчу пищевых продуктов при их долгом хранении (жиров, масел, пищевых концентратов).

Примеры решения задач

ПРИМЕР 1

Задание Водный раствор, содержащий 32,9 г фенола, обработали избытком брома. Рассчитайте массу образовавшегося бромпроизводного.
Решение Запишем уравнение реакции взаимодействия фенола с бромом:

C 6 H 5 OH + 3Br 2 →C 6 H 2 Br 3 OH + 3HBr.

В результате этого взаимодействия образуется 2,4,6-трибромфенол. Вычислим количество вещества фенола (молярная масса равна 94 г/моль):

n(C 6 H 5 OH) = m(C 6 H 5 OH) / M(C 6 H 5 OH);

n(C 6 H 5 OH) = 32,9 / 94 = 0,35 моль.

Согласно уравнению реакции n(C 6 H 5 OH) :n(C 6 H 2 Br 3 OH) = 1:1, т.е.

n(C 6 H 2 Br 3 OH) = n(C 6 H 5 OH) = 0,35 моль.

Тогда масса 2,4,6-трибромфенола будет равна (молярная масса -331 г/моль):

m(C 6 H 2 Br 3 OH) = 0,35 × 331 = 115,81 г.

Ответ Масса образовавшегося бромпроизводного равна 115,81 г.

ПРИМЕР 2

Задание Как получить фенол из иодобензола? Рассчитайте массу фенола, который может быть получен из 45,9 г иодобензола.
Решение Запишем уравнение реакции получения фенола из иодобензола:

C 6 H 5 I + NaOH→ C 6 H 5 OH + NaI (kat = Cu, t 0).

По электронному строению фенолы являются полярными соединениями, или диполями. Отрицательный конец диполя – это кольцо, положительный – группа –OH. Дипольный момент направлен к бензольному кольцу.

Поскольку гидроксильная группа – I рода, она повышает электронную плотность, особенно для орто- и пара-положений, в бензольном кольце. Это объясняется сопряжением, возникающим между одной из неподеленных электронных пар атома кислорода в OH-группе и π-системой кольца. Такое смещение неподеленной пары электронов приводит к повышению полярности связи O-H.

Взаимное влияние атомов и атомных групп в фенолах отражается на свойствах этих веществ. Так, увеличивается способность к замещению водородных атомов в орто- и пара-положениях бензольного ядра, и обычно в результате таких реакций замещения образуются тризамещенные производные . Повышение полярности связи между кислородом и водородом обусловливает появление достаточно большого положительного заряда (δ+) на , в связи с чем фенол диссоциирует в водных растворах по кислотному типу. В результате диссоциации образуются -ионы и катионы водорода.

Фенол C6H5OH – слабая кислота, называемая также карболовой кислотой. В этом заключается главное отличие фенолов от спиртов – неэлектроолитов.

Физические свойства фенола

По физическим свойствам C6H5OH – бесцветное кристаллическое вещество с температурой плавления 43˚C и температурой кипения 182˚C. На воздухе он окисляется и приобретает розовую окраску. При обычных условиях фенол ограниченно растворим в воде, но при нагревании выше 66˚C смешивается с H2O в любых отношениях. Это токсичное для человека вещество, способное вызывать ожоги кожи, антисептик.

Химические свойства фенола как слабой кислоты

Подобно всем кислотам, фенол диссоциирует в водных растворах, а также взаимодействует со щелочами с образованием фенолятов. Например, реакция C6H5OH и NaOH дает в итоге фенолят натрия C6H5ONa и воду H2O:

C6H5OH+NaOH=C6H5ONa+H2O.

Это свойство отличает фенолы от спиртов. Сходство со спиртами – реакция с активными металлами с образованием солей – фенолятов:

2C6H5OH+2K=2C6H5OK+H2.

Феноляты натрия и калия, образующиеся в результате двух последних реакций, легко разлагаются под действием кислот, даже такой слабой, как угольная. Из этого можно сделать вывод, что фенол – более слабая кислота, чем H2CO3.

Гидроксильная группа в молекулах органиче­ских соединений может быть связана с аромати­ческим ядром непосредственно, а может быть от­делена от него одним или несколькими атомами углерода. Можно ожидать, что в зависимости от этого свойства вещества будут существенно от­личаться друг от друга из-за взаимного влияния групп атомов. И действительно, органические соединения, содержащие ароматический радикал фенил С 6 Н 5 -, непосредственно связанный с ги­дроксильной группой, проявляют особые свойства , отличные от свойств спиртов. Такие соединения называются фенолами .

Органические вещества, молекулы которых содержат радикал фенил, связанный с од­ной или несколькими гидроксогруппами. Так же как и спирты, фенолы классифицируют по атом­ности, т. е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле од­ну гидроксильную группу:

Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Существуют и другие многоатомные фенолы, содержащие три и более гидроксильных групп в бензольном кольце.

Познакомимся подробнее со строением и свой­ствами простейшего представителя этого класса - фенолом С 6 Н 5 ОН. Название этого вещества и легло в основу названия всего класса - фенолы.

Фенол - твердое, бесцветное кристаллическое вещество, t° = 43 °С, t° = 181 °С, с резким характерным запахом. Ядовит . Фенол при ком­натной температуре незначительно растворяется в воде. Водный раствор фенола называют карбо­ловой кислотой. При попадании на кожу он вы­зывает ожоги , поэтому с фенолом необходимо об­ращаться осторожно!

Химические свойства фенолов

Кислотные свойства . Атом водорода гидрок­сильной группы обладает кислотным характером. Кислотные свойства у фенола выражены сильнее , чем у воды и спиртов. В отличие от спиртов и во­ды, фенол реагирует не только с щелочными металлами, но и со щелочами с образованием фенолятов :

Однако кислотные свойства у фенолов выра­жены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фено­ла примерно в 3000 раз меньше, чем у угольной кислоты. Поэтому, пропуская через водный рас­твор фенолята натрия углекислый газ, можно вы­делить свободный фенол.

Добавление к водному раствору фенолята на­трия соляной или серной кислоты также приводит к образованию фенола:

Фенол реагирует с хлоридом железа (III) с обра­зованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.

Эта реакция позволяет обнаруживать его даже в очень ограниченных количествах. Другие фено­лы, содержащие одну или несколько гидроксиль­ных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реак­ции с хлоридом железа (III).

Наличие гидроксильного заместителя значительно об­легчает протекание реакций электрофильного замещения в бензольном кольце.

1. Бромирование фенола.

В отличие от бензола для бромирования фенола не тре­буется добавления катализатора (бромида железа (III)). Кроме того, взаимодействие с фенолом про­текает селективно (избирательно): атомы брома направляются в орто- и параположения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола.

Так, при взаимодействии фенола с бромной во­дой образуется белый осадок 2,4,6-трибромфенола:

Эта реакция, так же как и реакция с хлоридом железа (III), служит для качественного обнаруже­ния фенола.

2. Нитрование фенола также происходит лег­че, чем нитрование бензола. Реакция с разбав­ленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и параизомеров нитрофенола:

При использовании концентрированной азот­ной кислоты образуется 2,4,6-тринитрофенол - пикриновая кислота, взрывчатое вещество:

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко:

4. Поликонденсация фенола с альдегидами , в частности, с формальдегидом происходит с обра­зованием продуктов реакции - фенолформальде­гидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом мож­но описать схемой:

В молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов:

Реакция поликонденсации, т. е. реакция полу­чения полимера, протекающая с выделением по­бочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израс­ходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующий­ся продукт имеет разветвленное строение, он твер­дый и нерастворим в воде. В результате нагревания фенолформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластиче­ские массы с уникальными свойствами. Полимеры на основе фенолформальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот. Они обладают высокими диэлектрическими свойствами. Из по­лимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрега­тов и детали машин, полимерную основу печатных плат для радиоприборов. Клеи на основе фенолфор­мальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высо­чайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Таким образом, фенол и про­дукты на его основе находят широкое применение.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении